home » libere » a non-exaustive list of recent works on excitonic insulators

A non-exaustive list of recent works on excitonic insulators

provided by Massimo Rontani


Y.F. Lu, H. Kono, T.I. Larkin, A.W. Rost, T. Takayama, A.V. Boris, B. Keimer, H. Takagi. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nature Communications 8, 14408 (2017). DOI:10.1038/ncomms14408

S. Mor, M. Herzog, D. Golež, P. Werner, M. Eckstein, N. Katayama, M. Nohara, H. Takagi, T. Mizokawa, C. Monney, J. Stähler. Ultrafast Electronic Band Gap Control in an Excitonic Insulator. Physical Review Letters 119, 086401 (2017). DOI: 10.1103/PhysRevLett.119.086401


Y. Murakami, D. Golež, M. Eckstein, P. Werner. Photoinduced Enhancement of Excitonic Order. Physical Review Letters 119, 247601 (2017). DOI: 10.1103/PhysRevLett.119.247601

D. Werdehausen, T. Takayama, M. Hoppner, G. Albrecht, A. W. Rost, Y. Lu, D. Manske, H. Takagi, S. Kaiser. Coherent Order Parameter Oscillations in the Ground State of the Excitonic Insulator Ta2NiSe5.Science Advances 4, eaap8652 (2018). DOI: 10.1126/sciadv.aap8652 

K. Domon, T. Yamada, and Y. Ono. Excitonic Phase Diagram of the Quasi-One-Dimensional Three-Chain Hubbard Model for Semiconducting and Semimetallic Ta2NiSe5. Journal of the Physical Society of Japan 87, 054701 (2018). DOI: 10.7566/JPSJ.87.054701 


Y.-S. Seo, M. J. Eom, J. S. Kim, C.-J. Kang, B. I. Min, and J. Hwang. Temperature-dependent excitonic superuid plasma frequency evolution in a strong excitonic insulator candidate, Ta2NiSe5. Scientific Reports 8, 11961 (2018). DOI: 10.1038/s41598-018-30430-9

D. Werdehausen, T. Takayama, G. Albrecht, Y. Lu, H. Takagi, S Kaiser. Photo-excited dynamics in the excitonic insulator Ta2NiSe5Journal of Physics: Condensed Matter 30, 305602 (2018). DOI: 10.1088/1361-648X/aacd76 

A. Nakano, T. Hasegawa, S. Tamura, N. Katayama, S. Tsutsui, H. Sawa. Electron–phonon coupling mode in excitonic insulator. Physical Review B 98, 045139 (2018). DOI: 10.1103/PhysRevB.98.045139

T. I. Larkin, R. D. Dawson, M. Hoeppner, T. Takayama, M. Isobe, Y.-L. Mathis, H. Takagi, B. Keimer, A. V. Boris. Infrared phonon spectra of quasi-one-dimensional Ta2NiSe5 and Ta2NiS5. arXiv:1807.10035

Carbon nanotubes

D. Varsano, S. Sorella, D. Sangalli, M. Barborini, S. Corni, E. Molinari, M. Rontani. Carbon nanotubes as excitonic insulators. Nature Communications 8, 1461 (2017). DOI: 10.1038/s41467-017-01660-8 

L. Aspitarte, D. R. McCulley, A. Bertoni, J. O. Island, M. Ostermann, M. Rontani, G. A. Steele, E. D. Minot. Giant modulation of the electronic band gap of carbon nanotubes by dielectric screening. Scientific Reports 7, 8828 (2017). DOI: 10.1038/s41598-017-09372-1

M. J. Senger, D. R. McCulley, N. Lotfizadeh, V. V. Deshpande, E. D. Minot. Universal interaction-driven gap in metallic carbon nanotubes. Physical Review B 97, 035445 (2018). DOI: 10.1103/PhysRevB.97.035445

M. Hellgren, J. Baima, A. Acheche. Exciton-Peierls mechanism and universal many-body gaps in carbon nanotubes. arXiv:1807.05589

 J. O. Island, M. Ostermann, L. Aspitarte, E. D. Minot, D. Varsano, E. Molinari, M. Rontani, G. A. Steele. Interaction-Driven Giant Orbital Magnetic Moments in Carbon Nanotubes. Physical Review Letters 121, 127704 (2018). DOI: 10.1103/PhysRevLett.121.127704 

Van der Waals layered structures

E. V. Calman, C. J. Dorow, M. M. Fogler, L. V. Butov, S. Hu, A. Mishchenko, A. K. Geim. Control of excitons in multi-layer van der Waals heterostructures. Applied Physics Letters 108, 101901 (2016). DOI:10.1063/1.4943204


X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, P. Kim. Quantum Hall drag of exciton condensate in graphene. Nature Physics 13, 746 (2017). DOI:10.1038/NPHYS4116


J. I. A. Li, T. Taniguchi, K.Watanabe, J. Hone, C. R. Dean. Excitonic superfluid phase in double bilayer graphene. Nature Physics 13, 751 (2017). DOI:10.1038/NPHYS4140


M.-K. Joo, Y. Jin, B. H. Moon, H. Kim, S. Lee, Y. H. Lee. Electron-hole pair condensation in Graphene/MoS2 heterointerface. arXiv:1711.00606


M. A. Zibrov, C. Kometter, H. Zhou, E. M. Spanton, T. Taniguchi, K. Watanabe, M. P. Zaletel, A. F. Young. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature (2017). DOI:10.1038/nature23893

G. W. Burg, N. Prasad, K. Kim, T. Taniguchi, K. Watanabe, A. H. MacDonald, L. F. Register, E. Tutuc. Strongly Enhanced Tunneling at Total Charge Neutrality in Double-Bilayer Graphene-WSe2 Heterostructures. Physical Review Letters 120, 177702 (2018). DOI:10.1103/PhysRevLett.120.177702  

S. Sorella, K. Seki, O. O. Brovko, T. Shirakawa, S. Miyakoski, S. Yunoki, E. Tosatti. Correlation-driven dimerization and topological gap opening in isotropically strained graphene. Physical Review Letters 121, 066402 (2018). DOI:10.1103/PhysRevLett.121.066402 

S. Saberi-Pouya, M. Zarenia, A. Perali, T. Vazifehshenas, F. M. Peeters. High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers. Physical Review B 97, 174503 (2018). DOI: 10.1103/PhysRevB.97.174503

P. López Ríos, A. Perali, R. J. Needs, D. Neilson. Evidence from Quantum Monte Carlo Simulations of Large-Gap Superfluidity and BCS-BEC Crossover in Double Electron-Hole Layers. Physical Review Letters 120, 177701 (2018). DOI:10.1103/PhysRevLett.120.177701   


A. Kogar, M. S. Rak, S. Vig, A. A. Husain, F. Flicker, Y. Il Joe, L. Venema, G. J. MacDougall, T. C. Chiang, E. Fradkin, J. van Wezel, P. Abbamonte. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314-1317 (2017). DOI: 10.1126/science.aam6432

M. Hellgren, J. Baima, R. Bianco, M. Calandra, F. Mauri, L. Wirtz. Critical Role of the Exchange Interaction for the Electronic Structure and Charge-Density-Wave Formation in TiSe2. Physical Review Letters 119, 176401 (2017). DOI: 10.1103/PhysRevLett.119.176401


B. Singh, C.-H. Hsu, W.-F. Tsai, V. M. Pereira, H. Lin. Stable charge density wave phase in a 1T–TiSe2 monolayer. Physical Review B 95, 245136 (2017). DOI: 10.1103/PhysRevB.95.245136


C. Chen, B. Singh, H. Lin, V. M. Pereira. Reproduction of the charge density wave phase diagram in 1T-TiSe2 exposes its excitonic character. arXiv:1712.04967

T. Kaneko, Y. Ohta, S. Yunoki. Exciton-phonon cooperative mechanism of the triple-q charge-density-wave and antiferroelectric electron polarization in TiSe2. Physical Review B 97, 155131 (2018). DOI: 10.1103/PhysRevB.97.155131

D. Pasquier, O. V. Yazyev. Excitonic effects in two-dimensional TiSe2 from hybrid density functional theory. arXiv:1805.11560

J. Zhao, K. Lee, J. Li, D. B. Lioi, D. J. Gosztola, G. P. Wiederrecht, G.  Karapetrov, N.  Trivedi, U.  Chatterjee. Spectroscopic fingerprints of many-body renormalizations in 1T-TiSe2. arXiv:1807.07598

B. Guster, E. Canadell, M. Pruneda, P. Ordejon. First principles analysis of the CDW instability of single-layer 1T-TiSe2 and its evolution with charge carrier density. 2D Materials 5, 025024 (2018). DOI: 10.1088/2053-1583/aab568

M. D. Watson, O. J. Clark, F. Mazzola, I. Markovic, V. Sunko, T. K. Kim, K. Rossnagel, P. D. C. King. Orbital- and kz-selective hybridisation of Se 4p and Ti 3d states in the charge density wave phase of TiSe2. arXiv:1808.07141

A. Wegner, J. Zhao, J. Li, J. Yang, A. A. Anikin, G.  Karapetrov, D. Louca, U.  Chatterjee. Evidence for breathing-type pseudo Jahn-Teller distortions in the charge density wave phase of 1T-TiSe2. arXiv:1807.05664 

M. Cazzaniga, H. Cercellier, M. Holzmann, C. Monney, P. Aebi, G. Onida, and V. Olevano. Ab initio many-body effects in TiSe2: A possible excitonic insulator scenario from GW band-shape renormalization. Physical Review B 85, 195111 (2012). DOI: 10.1103/PhysRevB.85.195111 

M. Calandra, F. Mauri. Charge-Density Wave and Superconducting Dome in TiSe2 from Electron-Phonon Interaction. Physical Review Letters 106, 196406 (2011). DOI: 10.1103/PhysRevLett.106.196406 

Comment by V. Olevano, M. Cazzaniga, M. Ferri, L. Caramella, and G. Onida. Physical Review Letters 112, 049701 (2014). DOI: 10.1103/PhysRevLett.112.049701 

Calandra and Mauri reply. Physical Review Letters 112, 049702 (2014). DOI: 10.1103/PhysRevLett.112.049702  

Dirac / Weyl semimetals

M. Hirata, K. Ishikawa, G. Matsuno, A. Kobayashi, K. Miyagawa, M. Tamura, C. Berthier, K. Kanoda, Anomalous spin correlations and excitonic instability of interacting 2D Weyl fermions. Science 358, 1403–1406 (2017). DOI:10.1126/science.aan5351


J.-R. Wang, G.-Z. Liu, C.-J. Zhang. Excitonic pairing and insulating transition in two-dimensional semi-Dirac semimetals. Physical Review B 95, 075129 (2017). DOI:10.1103/PhysRevB.95.075129


P. Michetti, C. Timm. Electron-hole pairing of Fermi-arc surface states in a Weyl semimetal bilayer. Physical Review B 95, 125435 (2017). DOI:10.1103/PhysRevB.95.125435


V.A. Prudkoglyad, E.B. Olshanetsky, Z.D. Kvon, V.M. Pudalov, N.N. Michailov, S.A. Dvoretsky. Two-dimensional semimetal in HgTe quantum well under hydrostatic pressure. arXiv:1712.01879


A. N. Rudenko, E. A. Stepanov, A. I. Lichtenstein, M. I. Katsnelson. Excitonic instability and pseudogap formation in nodal line semimetal ZrSiS. Physical Review Letters 120, 216401 (2018). DOI: 10.1103/PhysRevLett.120.216401


Exitonic magnetism

A. Sotnikov, J. Kunes. Field-induced exciton condensation in LaCoO3. Scientific Reports 6, 30510 (2016). DOI:10.1038/srep30510


S.-M. Souliou, J. Chaloupka, G. Khaliullin, G. Ryu, A. Jain, B. J. Kim, M. Le Tacon, B. Keimer. Raman Scattering from Higgs Mode Oscillations in the Two-Dimensional Antiferromagnet Ca2RuO4. Physical Review Letters 119, 067201 (2017). DOI:10.1103/PhysRevLett.119.067201


T. Kaneko, Y. Ohta. Electric and magnetic multipoles and bond orders in excitonic insulators. Physical Review B 94, 125127 (2016). DOI:10.1103/PhysRevB.94.125127


N. Kaushal, J. Herbrych, A. Nocera, G. Alvarez, A. Moreo, F. A. Reboredo, E. Dagotto. Density matrix renormalization group study of a three-orbital Hubbard model with spin-orbit coupling in one dimension. Physical Review B 96, 155111 (2017). DOI:10.1103/PhysRevB.96.155111


R.S. Markiewicz, A. Bansil. Excitonic insulators as a model of d d and Mott transitions in strongly correlated materials. arXiv:1708.02270


R.-P. Wang, A. Hariki, A. Sotnikov, F. Frati, J. Okamoto, H.-Y. Huang, A. Singh, D.-J. Huang, K. Tomiyasu, C.-H. Du, J. Kunes, F. M. F. de Groot. Excitonic dispersion of the intermediate-spin state in LaCoO3 revealed by resonant inelastic X-ray scattering. Physical Review B 98, 035149 (2018). DOI:10.1103/PhysRevB.98.035149


K. Tomiyasu, N. Ito, R. Okazaki, Y. Takahashi, M. Onodera, K. Iwasa, T. Nojima, T. Aoyama, K. Ohgushi, Y. Ishikawa, T. Kamiyama, S. Ishihara. Excitonic quantum paramagnet near spin-state transition. arXiv:1712.09169

D. Geoffroy, J. Kaufmann, A. Hariki, P. Gunacker, A. Hausoel, J. Kunes. Collective modes in ordered Mott systems: dynamical mean-field study. arXiv:1808.08046

D. Geoffroy, A. Hariki, J. Kunes. Excitonic magnet in external field: Complex order parameter and spin currents. Physical Review B 97, 155114 (2018). DOI: 10.1103/PhysRevB.97.155114  

InAs/GaSb bilayer

L. Du, X. Li, W. Lou, G. Sullivan, K. Chang, J. Kono, R.-R. Du. Evidence for a topological excitonic insulator in InAs/GaSb bilayers. Nature Communications 8, 1971 (2017). DOI:10.1038/s41467-017-01988-1


W. Yu, V. Clericò, C. Hernández Fuentevilla, X. Shi, Y. Jiang, D. Saha, W.K. Lou, K. Chang, D.H. Huang, G. Gumbs, D. Smirnov, C. J. Stanton, Z. Jiang, V. Bellani, Y. Meziani, E. Diez, W. Pan, S.D. Hawkins, J.F. Klem. Anomalous large resistance at the charge neutrality point in a zero-gap InAs/GaSb bilayer. New Journal of Physics 20, 053062 (2018). DOI: 10.1088/1367-2630/aac595

F. Xue, A. H. MacDonald. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions. Physical Review Letters 120, 186802 (2018). DOI: 10.1103/PhysRevLett.120.186802

Andreev-like phenomena

A. Kononov, S. V. Egorov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, E. V. Deviatov. Andreev reflection at the edge of a two-dimensional semimetal. Physical Review B 93, 041303(R) (2016). DOI: 10.1103/PhysRevB.93.041303


D. Bercioux, T. M. Klapwijk, F. S. Bergeret. Transport Properties of an Electron-Hole Bilayer in Contact with a Superconductor Hybrid Junction. Physical Review Letters 119, 067001 (2017). DOI:10.1103/PhysRevLett.119.067001

D. Bercioux, B. Bujnowski, F. S. Bergeret. Quantum Transport Properties of an Exciton Insulator/Superconductor Hybrid Junction. arXiv:1806.03991

X. Ming, D. Snoke, A. H. MacDonald. Polariton supercurrent generation in unipolar electro-optic devices. arXiv:1710.05826

Y.-F. Hsu, J.-J. Su. Single interface effects dominate in exciton-condensate/normal-barrier/exciton-condensate (EC/N/EC) structures of long-barrier. New Journal of Physics 20, 083002 (2018). DOI: 10.1088/1367-2630 aad3e1 

Miscellaneous (theory)

M. Hafez-Torbati, S. Uhrig. Singlet exciton condensation and bond-order-wave phase in the extended Hubbard model. Physical Review B 96, 125129 (2017). DOI:10.1103/PhysRevB.96.125129


R. Wang, O. Erten, B. Wang, D. Y. Xing. Charge fractionalization induced by parity anomaly in the chiral excitonic phase of topological surface state. arXiv:1705:06421


K. Hamada, T. Kaneko, S. Miyakoshi, Y. Ohta. Excitonic Insulator State of the Extended Falicov–Kimball Model in the Cluster Dynamical Impurity Approximation. Journal of the Physical Society of Japan 86, 074709 (2017). DOI: 10.7566/JPSJ.86.074709


S. Pradhan, A. Taraphder. Slave Rotor Approach to Exciton Condensation in a Two-band System. arXiv:1707.04701

Z. Jiang, Y. Li, S. Zhang, W. Duan. Realizing an intrinsic excitonic insulator by decoupling exciton binding energy from the minimum band gap. Physical Review B 98, 081408 (2018). DOI: 10.1103/PhysRevB.98.081408 

R. Fujiuchi, K. Sugimoto, Y. Otha. Excitonic Order and Superconductivity in the Two-Orbital Hubbard Model: Variational Cluster Approach. Journal of the Physical Society of Japan 87, 063705 (2018). DOI: 10.7566/JPSJ.87.063705 

M. Schuller, Y. Murakami, P. Werner. Nonthermal switching of charge order: Dynamical slowing down and optimal control. Physical Review B 97, 155136 (2018). DOI: 10.1103/PhysRevB.97.155136

S. Safaei, D. A. Mazziotti. Quantum signature of exciton condensation. Physical Review B 98, 045122 (2018). DOI: 10.1103/PhysRevB.98.045122

D. Y.-H. Ho, I. Yudhstira, B. Y.-K. Hu, S. Adam. Theory of Coulomb drag in spatially inhomogeneous 2D materials. Communications Physics 1, 41 (2018). DOI: 10.1038/s42005-018-0039-y

T. Tanabe, K. Sugimoto, T. Ohta. Nonequilibrium dynamics in the pump-probe spectroscopy of excitonic insulators. arXiv:1807.11202

Valid XHTML 1.0 Transitional