home » people » Andrea Ferretti

Andrea Ferretti

CNR Researcher

tel. +39 059 2055322

andrea.ferrettinano.cnr .it


via Campi 213/A,
I-41125, Modena, Italy

Running projects

MaX - Materials design at the exascale (a European centre of excellence)

MaX is a user-focused, problem-oriented European Centre of Excellence.
It works at the frontiers of the current and future High Performance Computing (HPC) technologies, to enable the best use and evolution of HPC for materials research and innovation.
MaX is creating an ecosystem of capabilities, ambitious applications, data workflows and analysis, and user-oriented services. At the same time, MaX enables the exascale transition in the materials domain, by developing advanced programming models, novel algorithms, domain-specific libraries, in-memory data management, software/hardware co-design and technology-transfer actions.

Research interests

Andrea Ferretti works in the field of condensed matter and solid-state physics, performing ab initio simulations at the level of DFT and beyond (e.g. by using many-body perturbation theory (MBPT) methods or Koopmans' compliant schemes). Current research interests focus on the ab initio study of the electronic and optical properties of organic semiconductors and hybrid interfaces. A list of topics includes:

- Variational formulations of first principles methods for theoretical spectroscopy (methodological developments).

- Interaction of organic molecules with metal surfaces, including the development of effective methods to study the electronic and optical spectroscopies of such systems.

- Electronic structure and transport at the nanoscale: the role and the inclusion of correlation effects; theory and applications.- New schemes for DFT functionals, with particular interest to self-interaction corrections and non-unitary invariant schemes.

- Development of Scientific Software: AF is developer of WanT, Yambo, and Quantum ESPRESSO.

Selected publications

- N.-L. Nguyen, N. Colonna, A. Ferretti, N. Marzari, Koopmans-compliant functionals for extended system: band gaps of semiconductors and insulators, Phys. Rev. X, in press (2018).

- G. Avvisati, P. Mondelli, P. Gargiani, C. Cardoso, D. Varsano, A. Ferretti, M.G. Betti, Orbital symmetry driven ferromagnetic and antiferromagnetic coupling of molecular systems, Nano Lett. 18, 2268-2273 (2018).

- M. C. Chong, N. Afshar-Imani, F. Scheurer, C. Cardoso, A. Ferretti, D. Prezzi, G. Schull, Bright electroluminescence from single graphene nanoribbon junctions, Nano Lett. 18, 175-181 (2018).

- N.-L. Nguyen, G. Borghi, A. Ferretti, I. Dabo, N. Marzari, First-principles calculation of photoemission spectra and orbital tomography of organic molecules using Koopmans-compliant functionals, Phys. Rev. Lett. 114, 166405 (2015).

- R. Denk, M. Hohage, P. Zeppenfeld, J. Cai, C.A. Pignedoli, H. S"ode, R. Fasel, X. Feng, K. M"ullen, S. Wang, D. Prezzi, A. Ferretti, A. Ruini, E. Molinari, P. Ruffieux, Exciton Dominated Optical Response of Ultra-Narrow Graphene Nanoribbons, Nature Comm. 5, 4253 (2014).

- A. Ferretti, I. Dabo, M. Cococcioni, N. Marzari, Bridging density-functional and many-body perturbation theory: orbital-density dependence in electronic-structure functionals, Phys. Rev. B 89, 195134 (2014).

- P. Ruffieux, J. Cai, N.C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Mullen, C.A. Pignedoli, R. Fasel, Electronic structure of atomical ly precise graphene nanoribbons, ACS Nano 6, 6930 (2012).

- I. Dabo, A. Ferretti, N. Poilvert, Y. Li, N. Marzari, M. Cococcioni, Koopmans' condition for density-functional theory, Phys. Rev. B 82, 115121 (2010).

- A. Ferretti, C. Baldacchini, A. Calzolari, R. Di Felice, A. Ruini, E. Molinari, and M.G. Betti, Mixing of electronic states in pentacene adsorption on copper, Phys. Rev. Lett. 99, 046802 (2007).

- A. Ferretti, A. Calzolari, R. Di Felice, F. Manghi, M. J. Caldas, M. Buongiorno Nardelli, and E. Molinari, First principles theory of correlated transport through nano-junctions, Phys. Rev. Lett. 94 116802 (2005).

Valid XHTML 1.0 Transitional