Diradicals evaporation on the cover
It is possible to evaporate diradicals in a controlled environment without degradation! Arrigo Calzolari latest reserach article published on the cover of Chemistry of materials journal.

Arrigo Calzolari's recent paper "Challenges in Controlled Thermal Deposition of Organic Diradicals" hits the cover of the last issue of Chemistry of materials journal (March 23, 2021, Volume 33, Issue 6).


Arrigo Calzolari from CnrNano and Maria Benedetta Casu from the University of Tubingen, in collaboration with colleagues from University of Nebraska, Max Planck Institute for Polymer Research, Mainz and Helmholtz-Zentrum Berlin, demonstrated that it is possible to evaporate diradicals in a controlled environment without degradation. The presence of two radical sites makes the molecules reactive, and difficult to deposit in thin films that are necessary for any realistic application.

Researchers explored the parameters that play a role in this phenomenon. They found that the higher the formation energies of the crystal, the more difficult is the evaporation of intact radicals, as well as that large delocalization of the unpaired electrons helps the diradical to stand evaporation.
Read the complete article.

Arrigo Calzolari’s recent paper “Challenges in Controlled Thermal Deposition of Organic Diradicals” hits the cover of the last issue of Chemistry of materials journal (March 23, 2021, Volume 33, Issue 6).


Arrigo Calzolari from CnrNano and Maria Benedetta Casu from the University of Tubingen, in collaboration with colleagues from University of Nebraska, Max Planck Institute for Polymer Research, Mainz and Helmholtz-Zentrum Berlin, demonstrated that it is possible to evaporate diradicals in a controlled environment without degradation. The presence of two radical sites makes the molecules reactive, and difficult to deposit in thin films that are necessary for any realistic application.

Researchers explored the parameters that play a role in this phenomenon. They found that the higher the formation energies of the crystal, the more difficult is the evaporation of intact radicals, as well as that large delocalization of the unpaired electrons helps the diradical to stand evaporation.
Read the complete article.

Related Content

Un biosensore innovativo per la rilevazione rapida dei virus

Cnr-Nano e Università di Pisa hanno sviluppato un nuovo biosensore in grado di rilevare con precisione la proteina Spike di…
Innovative GFP-based sensor paves the way for rapid virus detection in clinical settings

Innovative GFP-based sensor paves the way for rapid virus detection in clinical settings

Cnr Nano team developed a FRET-based sensor that detects the SARS-CoV-2 Spike protein in biological fluids, leveraging GFP fluorescence and…
Improving magnetic material calculations with advanced DFT

Improving magnetic material calculations with advanced DFT

A new density functional approximation addresses key challenges in modeling ferromagnetic, antiferromagnetic, and noncollinear states, as published in Physical Review…