Excitonic and topological order in T’-MoS2
Research team led by Cnr Nano studied the topological insulator MoS2, using advanced theoretical-computational methodologies based on quantum mechanics.
In an article just published on Nature Nanotechnology, our researchers Daniele Varsano, Elisa Molinari, and Massimo Rontani, in collaboration with Maurizia Palummo of the University of Rome Tor Vergata, studied the topological insulator MoS2, using advanced theoretical-computational methodologies based on quantum mechanics. By combining calculations from first principles with a self-consistent mean-field model, researchers showed that in the paradigmatic case of monolayer T' MoS2 the electronic dynamics in this material is more complex because the topological insulator also is an excitonic insulator. Researchers have shown that topological and excitonic properties coexist in a certain temperature and pressure range. They also showed how the electronic properties of MoS2 can be controlled through parameters such as temperature, pressure, or the presence of a substrate, making this results particularly interesting for the design of future nanoelectronics devices. The many-body perturbation theory calculations of the study were performed thanks to MaX CoE and PRACE. A monolayer transition-metal dichalcogenide as a topological excitonic insulator, Varsano, D., Palummo, M., Molinari, E. & Rontani M. Nature Nanotechnology (2020). https://doi.org/10.1038/s41565-020-0650-4 A free to read version can be found here: https://rdcu.be/b2phR

In an article just published on Nature Nanotechnology, our researchers Daniele Varsano, Elisa Molinari, and Massimo Rontani, in collaboration with Maurizia Palummo of the University of Rome Tor Vergata, studied the topological insulator MoS2, using advanced theoretical-computational methodologies based on quantum mechanics.


By combining calculations from first principles with a self-consistent mean-field model, researchers showed that in the paradigmatic case of monolayer T’ MoS2 the electronic dynamics in this material is more complex because the topological insulator also is an excitonic insulator. Researchers have shown that topological and excitonic properties coexist in a certain temperature and pressure range. They also showed how the electronic properties of MoS2 can be controlled through parameters such as temperature, pressure, or the presence of a substrate, making this results particularly interesting for the design of future nanoelectronics devices. The many-body perturbation theory calculations of the study were performed thanks to MaX CoE and PRACE.

 

A monolayer transition-metal dichalcogenide as a topological excitonic insulator, Varsano, D., Palummo, M., Molinari, E. & Rontani M. Nature Nanotechnology (2020). https://doi.org/10.1038/s41565-020-0650-4

 

A free to read version can be found here: https://rdcu.be/b2phR

Related Content

Advancing superconducting electronics: a new platform development at Cnr Nano

Advancing superconducting electronics: a new platform development at Cnr Nano

Researchers at Cnr Nano present InAsOI, a novel platform that enhances superconducting electronics by enabling high-performance, miniaturized devices with advanced…
Electric fields unlock new ways to control molecular spins

Electric fields unlock new ways to control molecular spins

An international collaboration involving researchers from Cnr Nano has opened new avenues for controlling the quantum properties of molecules, demonstrating…
Superconductors show surprising thermoelectric response

Superconductors show surprising thermoelectric response

A new study predicts that type II superconductors, typically thought incapable of thermoelectric effects, can generate high-efficiency power by exploiting…