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Introduction

|0〉 |1〉

Spin qubits: realized with the «spins» of localized charge carriers

Qubit: two-state QM system, basic unit of quantum information

Operations:

• Initialization in a known state;

• Manipulation through quantum logic gates;

• Measurement.



Example of two-qubit gate: Loss-Di Vincenzo proposal

• Double quantum dot (two coupled dots);

• No magnetic field;

• Time-dependent exchange interaction.

|0〉 |1〉

Initialization: state 0 in dot 1 and state 1 in dot 2, high barrier between the dots



Example of two-qubit gate: Loss-Di Vincenzo proposal

• Double quantum dot (two coupled dots);

• No magnetic field;

• Time-dependent exchange interaction.

Manipulation: barrier pulsed to low voltage in a time-dependent way

|0〉 |1〉



Example of two-qubit gate: Loss-Di Vincenzo proposal

• Double quantum dot (two coupled dots);

• No magnetic field;

• Time-dependent exchange interaction.

|0〉|1〉

After some time: qubit states have been swapped (SWAP gate)



Example of two-qubit gate: Loss-Di Vincenzo proposal

• Double quantum dot (two coupled dots);

• No magnetic field;

• Time-dependent exchange interaction.

|0〉|1〉

After some time: qubit states have been swapped (SWAP gate)

Sqrt(SWAP) + single-qubit gates  universal quantum computation



Why silicon and germanium? Why holes?



• High natural abundance of non-magnetic isotopes (28Si + 30Si > 95% and 
70Ge + 72Ge + 74Ge + 76Ge > 92%) + isotopic purification   small 

hyperfine interaction  long coherence times

Why silicon and germanium? Why holes?
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M. Veldhorst et al., Nature Nanotech. 9, 981 (2014) 

J. Yoneda et al., Nature Nanotech. 13, 102 (2018) 

W. Huang et al., Nature 569, 532 (2019) 

• High degree of control of single and few charge carriers in Si and Ge QDs 

achieved experimentally during the last decade (gates and readout)
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• Key materials for modern electronics  well-established industrial 

fabrication techniques  integration of qubits and control circuits (CMOS 

qubits)



R. Li et al., Nano Lett. 15, 7314 (2015) 
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• Valence band made of p orbitals  further reduction of hyperfine 

interaction and larger spin-orbit coupling w. r. to conduction band 

hole-spin qubits can be manipulated fully electrically



Main challenge

Need to operate the qubit at millikelvin temperatures to enhance coherence

times; need to operate the control electronics at 1-4 K to allow for a

sufficiently fast removal of dissipated power  conflicting requirements

Qubit implementation in down-scaled MOSFETs (high quantum confinement

 higher excitation energies  possibility of operating the qubit at higher

temperatures)



Scaled Si pMOSFET (scaled version of GlobalFoundries 22-nm FDSOI process)

Qubit manipulation

through voltage pulses

applied to the top gate

L. Bellentani et al., Phys. Rev. Applied 16, 054034 (2021) 
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Application of one or more gates to generate single or

multiple QD confinement potential inside the Si channel

source

drainchannel

gate on top of the insulating layer

 Goal: Investigate the feasibility of one-hole or two-hole qubits 

in single or double quantum dots 



Holes at the Γ point

• The unit cell of Si and Ge contains two atoms

• Three p orbitals are relevant for the valence bands at their maximum point (Γ)
• Six Bloch spin-orbital states needed to describe holes at Γ: j = 3/2 and j = 1/2 multiplets

• j = 3/2 and |m| = 3/2: heavy holes;  j = 3/2 and |m| = 1/2: light holes; j = 1/2: split-off bands    



• Including confinement (QD): envelope function scheme

• Diagonalization yields the 6-component envelope function:

eigenstate 6-valued band index  B = ( j , m )

basis



• Two-hole states are obtained via the Configuration-Interaction (CI) method

• Two-body matrix elements of the interaction are required

Inter- and intra-band interactions

Textbook expression:



• Two-hole states are obtained via the Configuration-Interaction (CI) method

• Two-body matrix elements of the interaction are required

Inter- and intra-band interactions

Textbook expression:

BUT we are dealing with a multi-band system:

Band-dependent interaction

A. Secchi et al., Phys. Rev. B 104, 205409 (2021) 
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Short-ranged

Relevant for downscaled devices



Single quantum dot, two-hole excitation energies

High screening No screening

0.0855



Single quantum dot, two-hole excitation energies

High screening No screening

0.0855



Recap (1)

• 6-band envelope-function formalism;

• Configuration-Interaction (CI) method for interacting two-hole systems;

• Intra- and inter-band Coulomb scattering processes;

• Interband Coulomb processes are relevant in a regime of high screening
and/or strong confinement;

• In unscreened Si single quantum dots  two-hole Wigner molecules.



Double quantum dots

 weak tunneling regime

A. Secchi et al., Phys. Rev. B 104, 035302 (2021) 

Two-qubit gates via exchange modulation

(Loss-Di Vincenzo proposal)

 approximations of realistic potentials computed with TCAD or Poisson simulations

y
x

z



Single-hole states

band-dependent envelope function
band spinor (Bloch state)

b = ( j, m)

This state cannot be factorized exactly as:

«Spin»-orbital correlation: the population is distributed among different bands and

the envelope functions corresponding to different bands are not parallel

General form:

Denoted as

Because of time-reversal symmetry in the absence of a magnetic field, they are 

organized in Kramers doublets:



Si

Si

Ge

Ge

Si

Dot 1 Dot 2

Si requires shorter interdot distances than Ge

(larger effective masses)

 it is relevant to study the impact of strain



Band compositions and mirror symmetry

• The heavy-hole component is dominant, followed by a small light-hole 
component; the split-off band is negligible  small entanglement

• Single-particle states are close to being eigenstates of the mirror symmetry 
operators (with even or odd parity)

• Results for Ge are analogous; the heavy-hole weight is even larger



( J, M ) representation (eigenstates of square modulus and third component of total

angular momentum):

neglect split-off bands: each hole has (heavy and light holes) 

where (16 spinors)

2-hole orbitals 2-hole spinors

spinor weigths

Two-hole states

General form: combination of Slater determinants



Si

Si

Ge

Ge

Main messages from the numerics

- Lowest energy states: singlet and triplet

- Complicated spinor structure

- The singlet-triplet gap decreases with a

faster than the single-particle gap

- The singlet-triplet gap is significantly

larger for Ge at the same a



minority-symmetry

terms (symmetric

spinors)

Spinor compositions
(relevant for external field coupling and decoherence)

minority-symmetry

terms (anti-

symmetric spinors)



Effective 4-band Hubbard model

Localized single-dot single-particle states:

Numerical calculations on the single-dots suggest the following approximation:

We derive the effective model Hamiltonian

and we solve it for N = 1 and 2, comparing the solutions with the numerical results.

s = site index

τ = Kramers spin

Motivation: better understanding of physics + possible extension to large arrays of qubits



Solution for N = 1

Eigenenergies (both doubly degenerate):

Eigenstates:

Expansion on the m basis:

NB:
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Solution for N = 1

Eigenenergies (both doubly degenerate):

Eigenstates:

Expansion on the m basis:

NB:

Spatial (anti)-symmetry for real T

consistent with numerical results

m mixing



Solution for N = 2

We directly consider the Heisenberg-Hamiltonian limit (low T/U ):

where

Eigenstates:

Energy = - J

Energy = 0

(Kramers-spin operator for site s)



Expansion of the singlet state on the (J, M ) basis:



Expansion of the singlet state on the (J, M ) basis:
Antisymmetric spinors

Symmetric spinors



Expansion of the singlet state on the (J, M ) basis:
Antisymmetric spinors

Symmetric spinors

Symmetric orbitals

Antisymmetric orbitals

(L-H mixing and non-parallelism

is necessary)
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Expansion of the singlet state on the (J, M ) basis:
Antisymmetric spinors

Symmetric spinors

Symmetric orbitals

Singlet in the 2-band,

spin-1/2 case:

Antisymmetric orbitals

(L-H mixing and non-parallelism

is necessary)
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Antisymmetric spinor
Symmetric orbital

(L-H mixing and non-parallelism

is necessary)

Antisymmetric orbitals

Symmetric spinors

Expansion of a triplet state on the (J, M ) basis:

Analogous triplet state in 

the 2-band, spin-1/2 case:



Antisymmetric spinor
Symmetric orbital

(L-H mixing and non-parallelism

is necessary)

Antisymmetric orbitals

Symmetric spinors

Expansion of a triplet state on the (J, M ) basis:

If we kill the L holes, we kill the minority-symmetry components and the M mixing:

Analogous triplet state in 

the 2-band, spin-1/2 case:



Comparison of the Hubbard model with the numerical results:

is the weight of the (J, M ) spinor in state k

The model predicts specific relations between several values of             , independently of the 

specific orbital wave functions. For example (taken from a triplet state):

… …

There are 18 relations similar to this for the predicted spinor weights in the singlet and triplet.

Comparison with the numerics:  

implies

- All relations satisfied within an accuracy of 10-4 – 10-3

- Spinors not predicted by the model, total weight: 10-3 – 10-2

- Minority-symmetry states: 10-2



Recap (2)

• Single- and two-hole states exhibit a small degree of entanglement, due to
either small band mixing, or parallelism of the envelope functions, or both;

• They are superpositions of spinors with different eigenvalues of the angular
momentum operators;

• A four-band version of the Hubbard model is able to account for the mixing
(qualitatively and quantitatively);

• The source of even/odd J mixing in the two-hole states is due to the
presence of distinct heavy- and light-hole envelope functions (i.e., the same
source of spin-orbital entanglement);

• Possible extension to large arrays of qubits.



Works in progress and future works

• Study of the role of strain in increasing tunneling and exchange;

• Study of qubit readout circuits and quantum capacitance;

• Study of decoherence due to charge impurities and phonons.
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