Theoretical study of internal conversion between excited states in a functionalized porphyrin

P. S. Rukin, D. Prezzi, C. A. Rozzi

CNR NANO S3 Modena
Why should we study porphyrins?

— widely distributed in living tissues where they participate in vital biochemical processes
— serve as the reaction centers in light harvesting systems and can be used as candidates for synthesizing various efficient bioinspired molecular systems by functionalizing peripheral or the core parts of the molecule.

Structural model of Chlorophyll f homodimer based on PsbA of photosystems II. The psbA gene plays an important role in protecting photosystem II (PSII) from oxidative damage in higher plants.
Photoinduced processes

Internal conversion

Vibrational Relaxation

Absorption

Absorption

Internal Conversion

Intersystem Crossing

Fluorescence

Intersystem Crossing

Phosphorescence

Absorption

S_0

S_1

S_2

T_1

T_2

T_3
Pump-probe vs Two-Dimensional Electronic Spectroscopy (2DES)

Pump-probe experiment

- **Pump** pulse
- **Probe** pulse
- **Detection** pulse
- Sample
- **Delay time** t_{delay}
- Signal

2DES pulse sequence scheme

To obtain 2D maps:

- Measure signal of ω_{probe}
- Scan t_{delay} and ω_{pump}
- Stack obtained spectra

Features:

- Dependent time and frequency resolutions

To obtain 2D maps:

- Measure signal of ω_3
- Scan t_1 and t_2
- Perform Fourier transform over t_1

Features:

- Independent time and frequency resolutions

https://www.femtosecond.fisi.polimi.it
Pump-probe vs Two-Dimensional Electronic Spectroscopy (2DES)

Dynamics of the system

2D cube of data \((\omega_1, t_2, \omega_3)\)

- Cut at specific \(t_2\)
- Cut at specific \(\omega_1\)

If \(t_2=0\) — Pump-probe spectroscopy

2DES pulse sequence scheme

To obtain 2D maps:
- Measure signal of \(\omega_3\)
- Scan \(t_1\) and \(t_2\)
- Perform Fourier transform over \(t_1\)

Features:
- Independent time and frequency resolutions

How can theoretical tools help to explain better the system?

https://www.femtosecond.fisi.polimi.it
Why do we need theoretical study in addition to the experiment?

Experiment

- gives the complete picture of the photophysical processes:

 a) absorption spectrum
 b) pump-probe spectrum
 c) 2D spectrum (showing the dynamics)

- gives exact rates of internal conversion times including the range of important frequency regions

Theoretical study

- affords to separate the system into the components

 Define **structural parameters** responsible for the features of the spectrum (nature of the peaks and “shoulders”)

- can define/suggest the channels of radiationless transitions pointing the **structural parts** of molecule that are involved into the process

What theoretical tool that can be used in both optical and radiationless processes?
Theoretical tool that can be used in both optical and radiationless processes.

- r, r' — initial and final electronic states
- m, m' — initial and final vibrational states
- q — normal coordinate
- E_{rm} — energy of the vibronic state
- ε_r — energy of the electronic state
- $\chi_{r'm'}(q)$ — vibronic wavefunction
Input from ab initio calculations:
— optimized geometries of initial/final state
— normal modes (μ) and frequencies (ω_μ) of the initial/final state
— gradients (V_{rm}) on the final/initial state PES

\[\xi_\mu = \frac{1}{2\hbar} \Delta q_\mu^2 \omega_\mu \] — Huang Rhys (HR) factor

\[\text{ER}_\mu = \hbar \omega_\mu \xi_\mu \] — per mode reorganization energy (ER)

— Condon approximation
— Independent harmonic modes
— Parallel Harmonic approximation
\[\{\mu_r\} = \{\mu_r'\}, \{\omega_{ur}\} = \{\omega_{ur}\} \]
Simplified diagram of Huang-Rhys factors and Reorganization energy calculations

- Condon approximation
- Independent harmonic modes
- Parallel Harmonic approximation

\{\mu_r\} = \{\mu_{r'}\}, \{\omega_{\mu r}\} = \{\omega_{\mu r'}\}
What can we get knowing HR factors?

\[\xi_\mu = \frac{1}{2\hbar} \Delta q^2 \omega_\mu \quad \text{Huang-Rhys factor} \]

\[ER_\mu = \hbar \omega_\mu \xi_\mu \quad \text{Reorganization energy} \]

- Absorption spectrum with the vibronic structure
- Active modes and corresponding vibrations
- IC rate constants
- PES scans along active modes. Search of possible conical intersections/avoided crossings
- Analysis of molecular structure parts that are included in the active modes vibrations. Updating the structure.
What can we get knowing HR factors?

\[\xi_\mu = \frac{1}{2\hbar} \Delta q^2 \omega_\mu - \text{Huang-Rhys factor} \]

\[ER_\mu = \hbar \omega_\mu \xi_\mu - \text{Reorganization energy} \]

- Absorption spectrum with the vibronic structure

- Active modes and corresponding vibrations

- IC rate constants

- PES scans along active modes. Search of possible conical intersections/avoided crossings

- Analysis of molecular structure parts that are included in the active modes vibrations. Updating the structure.
A) Representation of the four Gouterman orbitals in porphyrins.
B) Energy levels of the four Gouterman orbitals

5-Ethoxycarbonyl-10-mesityl-15-carboxymethylbenzene porphyrin
Margherita Maiuri group
IFN-CNR, Politecnico di Milano.
Absorption spectrum of the monomer

DFT 6-311 (d,p)/CAM-B3LYP/PBE0 Solvent: THF (PCM)
Per mode Reorganization energies (ER) for $S_0 \rightarrow S_n$ transitions

$$\text{ER}_\mu = \hbar \omega_\mu \xi_\mu$$

ξ_μ — Huang Rhys (HR) parameter along the normal mode
ω_μ — frequency of the normal mode

* Obtaining the normal modes of S_2 and S_4 states is complicated due to poor convergence of the optimization procedure.
Absorption spectrum with the vibronic structure

\[I(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(t) e^{i\omega t} dt \]

\[G(t) = \exp \left[\frac{it(\varepsilon^0_r - \varepsilon^0_{r'})}{\hbar} \right] \prod_{\mu} \exp \left[-\xi_{\mu} \left(\coth \frac{\hbar \omega_{\mu}}{2kT} (1 - \cos \omega_{\mu} t) - i \sin \omega_{\mu} t \right) \right] D(t) \]

\[D(t) = e^{-\frac{\Gamma|t|}{\hbar}} \]

\(\varepsilon^0_r - \varepsilon^0_{r'} \) — energy difference between the ground and an excited state

\(\xi_{\mu} \) — Huang Rhys (HR) parameter along the normal mode

\(\omega_{\mu} \) — frequency of the normal mode

\(\Gamma \) — FWHM of low-frequency modes
What can we get knowing HR factors?

\[\xi_\mu = \frac{1}{2\hbar} \Delta q^2 \omega_\mu - \text{Huang-Rhys factor} \]

\[ER_\mu = \hbar \omega_\mu \xi_\mu - \text{Reorganization energy} \]

- Absorption spectrum with the vibronic structure
- Active modes and corresponding vibrations
- IC rate constants
- PES scans along active modes. Search of possible conical intersections/avoided crossings
- Analysis of molecular structure parts that are included in the active modes vibrations. Updating the structure.
IC rate constant calculation

\[k_{rr'm'} = \frac{2\pi}{\hbar} \nu_{el}^2 \sum_{m,m'} F_{rr'm'} \delta_{\gamma}(E_{rm} - E_{r'm'}) \]

\[F_{rr'm'} = f(\frac{\xi}{\mu}) \text{ Frank-Condon factor} \]

ER between \(S_3 \) (B band) and \(S_2 \) (Q band) in the basis set of \(S_1 \) (Q band) state

\[\Delta E (B-Q) = 6078 \text{ cm}^{-1} \]

Optimization + energy and gradient calculation: DFT 6-311 (d,p)/CAM-B3LYP
Solvent: THF (PCM)
\(\Delta E \) (B-Q) = 6078 cm\(^{-1}\)
\(u_{el}^2 \) (NACME\(^2\), a.u., CASSCF) = 0.1

Exp \(\sim \) 100 fs

IC time = 260 fs

6 modes (51\% ER)

19 modes (77\% ER)

39 modes (90\% ER)

IC time = 60 fs

IC time = 38 fs
What can we get knowing HR factors?

\[\xi_\mu = \frac{1}{2\hbar} \Delta q^2 \omega_\mu - \text{Huang-Rhys factor} \]

\[ER_\mu = \hbar \omega_\mu \xi_\mu - \text{Reorganization energy} \]

Absorption spectrum with the vibronic structure

Active modes and corresponding vibrations

IC rate constants

PES scans along active modes. Search of possible conical intersections/avoided crossings

Analysis of molecular structure parts that are included in the active modes vibrations. Updating the structure.
Per mode Reorganization energies (RE) for $S_0 \rightarrow S_n$ transitions

![Graph showing reorganization energies](image)

High frequency modes with the highest per mode Reorganization energies of the Q band: a),b) for $S_0 \rightarrow S_1$; c),d) for $S_0 \rightarrow S_2$ transition. Front view is on the upper panel and lateral one — on the lower.
Scan of PES along the active mode (1514 cm\(^{-1}\), \(S_1\), Q band)

Vibrations along 1514 cm\(^{-1}\)
Normal mode

\[
G_\mu [a, x] = G_{S_0} [a, x] + \text{shift}_\mu [a, x]
\]

\[
\text{shift}_\mu [a, x] = A \cdot l_\mu [a, x] \cdot \sin(\omega_\mu t)
\]

"a" — atom \(x\) — \(x, y, z\)

*States \(S_1\), \(S_2\) correspond to the Q band
\(S_3\), \(S_4\) to the B band

\(G_\mu [a, x]\) — Geometry along the mode
\(l_\mu [a, x]\) — component of the normal modes matrix
Scan of PES along the active mode (1514 cm\(^{-1}\), \(S_1\), Q band)

Vibrations along 1514 cm\(^{-1}\)
Normal mode

\[G_\mu[a,x] = G_{S_0}[a,x] + shift_\mu[a,x] \]
\[shift_\mu[a,x] = A \cdot l_\mu[a,x] \cdot \sin(\omega_\mu t) \]

"a" — atom \(x\) — \(x,y,z\)

\(G_\mu[a,x]\) — Geometry along the mode
\(l_\mu[a,x]\) — component of the normal modes matrix

*States \(S_1, S_2\) correspond to the Q band
\(S_3, S_4\) to the B band
Molecular orbitals involved in the electronic excitations

A) Representation of the four Gouterman orbitals in porphyrins.
B) Energy levels of the four Gouterman orbitals

Is it enough the Gouterman model?
Molecular orbitals involved in the electronic excitations (optimized S_1 geometry)

Orbital characteristic for the dark state of the bare porphyrin:
- HOMO-4 \rightarrow LUMO

Orbitals particular for the porphyrin derivative dark state localized on the substituent:
- HOMO-3 \rightarrow LUMO
- HOMO-2 \rightarrow LUMO

Orbitals of the Gouterman model:
- HOMO-1 \leftrightarrow LUMO
- HOMO \leftrightarrow LUMO+1
Transition energies along the 1514 cm$^{-1}$ (active) mode (S_1 basis)

Vertical Transition Energies $S_0 \rightarrow S_n$

HOMO-4 \rightarrow LUMO
Orbital characteristic for the dark state of the bare porphyrin

HOMO-3 \rightarrow LUMO
Orbitals particular for the porphyrin derivative dark state localized on the substituent

HOMO-2 \rightarrow LUMO
HOMO \rightarrow LUMO+1
Orbitals of the Gouterman model

orbital composition colormap
oscillator strength (thickness) of $S_0 \rightarrow S_n$
Transition energies along the 1514 cm\(^{-1}\) (active) mode (S\(_1\) basis)

Vertical Transition Energies S\(_0\)->S\(_n\)

Vertical Transition Energies S\(_0\)->S\(_n\) (S\(_0\)=0 eV)

B band

Q band
“Crossing” inside the Q band along the 1514 cm\(^{-1}\)

Vibrations along 1514 cm\(^{-1}\)
Normal mode

\[E_r(q) = \varepsilon_r(q) + \frac{1}{2} \sum M_{\mu} \omega_{\mu\tau}^2 (q_{\mu\tau} - q_{\mu\tau}^0)^2 \]

\[E_{r\mu}(q) = \varepsilon_r(q) + \frac{1}{2} M_{\mu} \omega_{\mu\tau}^2 (q_{\mu\tau} - q_{\mu\tau}^0)^2 \]
Transition dipole moment as a tool to define conical intersection?

Transition dipole moment evolution along 1514 cm\(^{-1}\)

Direction of the transition dipole moment.
Color shows which component (X or Y) is prevailing

\(-2.48\) Value of the transition dipole moment along X axis
\(1.38\) Value of the transition dipole moment along Y axis

The nature of the transition dipole moment after “crossing” exchanging between the states inside of the Q band
Comparison with the experiment

Pump Probe Spectrum in the Q band range

Components of the Pump-Probe:
“—” the ground state bleaching (GSB)
“+” excited state absorption (ESA)
“—” stimulated emission (SE)

The 670-700 nm region can have only ESA transition and maybe some SE contribution, but no GSB.
Comparison with the experiment

Sliding Window Fourier Transform (SWFT) at 685nm for 250 fs gaussian with the steps of 10 fs

1. What is the nature of the modes? Ground state or excited state (Q band) ones?
2. Which of the modes are participating in the process?
Reorganization energies of the high frequency modes for the Q band states

Higher values in the S_1 (Q band) than in S_0 (ground state) basis set confirms that in the Q band modes are playing the main role in the process.
Comparison with the experiment

Sliding Window Fourier Transform (SWFT) at 685 nm for 250 fs gaussian with the steps of 10 fs

RE(grey) of $S_1 \rightarrow S_2$ (opt S_1)
VS Integrated FFT for the Excited State coherences at 680-700 nm (black)

Analysis of RE showing the crucial role of 1514 cm$^{-1}$ mode in the process and also defines the group of modes (and corresponding vibrations) that are participating at the beginning of the process.
The connecting point between the experiment and the theory?

Transferring from “X” active mode of S_2 to 1514 cm$^{-1}$ of S_1

$G_{\mu}[a,x] = G_{S_0}[a,x] + shift_{\mu}[a,x]$

$shift_{\mu}[a,x] = A \cdot l_{\mu}[a,x] \cdot \sin(\omega_{\mu} t)$

$E_{r}(q) = \varepsilon_{r}(q) + \frac{1}{2} M_{\mu} \omega_{\mu}^2 (q_{\mu} - q_{\mu}^0)^2$

*States S_1, S_2 correspond to the Q band

How to find “X” mode of S_2?
The connecting point between the experiment and the theory?

Transferring from "X" active mode of S_2 to 1514 cm$^{-1}$ of S_1

How to find "X" mode of S_2?

*States S_1, S_2 correspond to the Q band
PES energies along the 1514 cm^{-1} mode (active) and others high ER modes (tuning)

PES near possible crossing of the S_1 and S_2 terms

Energy gap between the S_1 and S_2 terms
What can we get knowing HR factors?

\[\xi_\mu = \frac{1}{2\hbar} \Delta q_\mu^2 \omega_\mu - \text{Huang-Rhys factor} \]

\[ER_\mu = \hbar \omega_\mu \xi_\mu - \text{Reorganization energy} \]

- Absorption spectrum with the vibronic structure
- Active modes and corresponding vibrations
- PES scans along active modes. Search of possible conical intersections/avoided crossings
- IC rate constants
- Analysis of molecular structure parts that are included in the active modes vibrations. Updating the structure.
Conclusions

Simple but yet effective approach using HR and ER provides.

1) absorption spectrum including the vibronic structure (band shape)

2) an estimate value of the internal conversion rates and corresponding times of radiationless transitions between excited states

3) The simulations allow us to define active normal modes and corresponding vibrations that contribute to Internal Conversion due to vibrational relaxation. — Thus it is possible to explain experimental data from the the point “Where” the processes are happening and which structural parts of the molecule are involved — Knowing the active modes it is possible to update the molecular structure to enhance or reduce specific features
THANK YOU FOR YOUR ATTENTION!

Theory

Pavel Rukin, Deborah Prezzi, Carlo Andrea Rozzi
CNR NANO S3 Modena

Frank E. Quintela Rodriguez, Filippo Troiani, Elisa Molinari.
CNR NANO S3 Modena

Experiment

Vasileios Petropoulos¹, Mattia Russo¹, Luca Moretti¹,², Ana L Moore ³, Thomas A Moore³, Giulio Cerullo¹, Gregory D Scholes², Margherita Maiuri¹,²
1 IFN-CNR, Dipartimento di Fisica, Politecnico di Milano.
2 Department of Chemistry, Princeton University, United States.
3 School of Molecular Sciences, Arizona State University, United States