

Multiscale modeling of charge transfer reactions in biological systems

Laura Zanetti Polzi

Charge Transfer in Biological Systems

stroma

"Life on earth is energized by the stepwise vectorial transport

of individual electrons and protons."*

- Photosynthesis
- Respiration
- Proton pumping
- Catalysis

*Beratan et al. Acc. Chem. Res. 2015, 48.2, 474-481.

Hybrid quantum/classical approaches

- Proper treatment of the reaction event at the quantum level
- Proper description of the complexity of the system
- Interplay between reactants and environment considered

Interpretation at the molecular level of the reaction/process of interest

Two charge transfer reactions

- The catalytic proton transfer (PT) reaction in SARS-CoV-2 main protease (Mpro)
- The light-induced electron transfer (ET) reaction in lactate monooxygenase (LMO)

Mpro plays a key role in viral replication and transcription

Jeong et al. Front. Microbiol. 11, 2020, 1723.

Mpro is one of the most promising targets for drug development

- Inhibition of its cleaving activity would block the viral replication cycle
- Its recognition sequence is different from that of all human proteases
- Mpro structure is very similar among the coronaviruses family

Cysteine-histidine catalytic dyad (Cys145/His41)

Protein hydrolysis mediated by Cys145 that binds to the carbonyl carbon of a susceptible peptide bond

Moliner V. et al., *Chem. Sci.* **2020**, 11, 10626–10630; Tunon, I. et al., *ACS Catal.* **2020**, 10, 12544–12554; Warshel, A. et al, *Biochem.* **2020**, 59, 4601–4608; Paasche, A. et al., *Biochem.* **2014**, 53, 5930–5946.

The imidazole of **His41** is the base of the proton transfer (**PT**) reaction leading to a highly reactive zwitterionic couple:

 $Cys145H + His41 \rightleftharpoons Cys145^{-} + His41H^{+}$

MODENA

CNRNAN

Moliner V. et al., *Chem. Sci.* **2020**, 11, 10626–10630; Tunon, I. et al., *ACS Catal.* **2020**, 10, 12544–12554; Warshel, A. et al, *Biochem.* **2020**, 59, 4601–4608; Paasche, A. et al., *Biochem.* **2014**, 53, 5930–5946.

 The covalent binding of some classes of inhibitors (such as Michael acceptors and ketoamides) also requires deprotonated Cys145 through a PT to His41.

- The covalent binding of some classes of inhibitors (such as Michael acceptors and ketoamides) also requires deprotonated Cys145 through a PT to His41.
- The inability to efficiently promote the PT reaction has been suggested to determine the low inhibition potencies of some known inhibitors*.

- The covalent binding of some classes of inhibitors (such as Michael acceptors and ketoamides) also requires deprotonated Cys145 through a PT to His41.
- The inability to efficiently promote the PT reaction has been suggested to determine the low inhibition potencies of some known inhibitors*.
- The PT reaction free energy in the presence of two inhibitors (N3 and a-ketoamide 13b) accounts for 40-50% of the total activation free energy for the formation of the covalent complex**.

The improvement of the stability of the charged catalytic dyad by the inhibitor binding could be a strategy to promote inhibition

Knowledge of the protein regions capable of affecting the PT reaction is a crucial point for the design and screening of potential inhibitors

Here we focus on the investigation of the thermodynamics of the PT reaction in the apo enzyme and in complex with two inhibitors

The main aim is to identify the enzyme regions and specific water molecules that control the activation of the catalytic PT reaction

Protonation state of key residues

MD simulations to investigate the effects of different protonation states for crucial residues in Mpro in both the **apo** form as well as **ligand-bound complexes**

Peptidomimetic covalent inhibitors N3 and 13b

Pavlova, et al., *Chem. Sci.* 2021, 12, 1513–1527.

Protonation state of key residues

The combination of protonation states for histidines in or near the catalytic site can have a profound impact on Mpro's structural stability

Pavlova, et al., Chem. Sci. 2021, 12, 1513–1527.

We treat at the QM level a small portion of the system (the QC, here Cys/His sidechains) while the rest of the system (the environment) exerts a classical electrostatic perturbation on the QC*

 $Cys145H + His41 \rightleftharpoons Cys145^{-} + His41H^{+}$

Reactant ensemble

Product ensemble

MD simulations* of the apo enzyme: in the reactant ensemble and in the product ensemble

$Cys145H + His41 \rightleftharpoons Cys145^{-} + His41H^{+}$

Reactant ensemble

Product ensemble

QM calculations of gas-phase electronic Hamiltonian eigenstates for the quantum centers (QCs):

- Unperturbed energies and dipoles for C/H
- \implies Unperturbed energies and dipoles for C-/H+

$$\mathsf{H}_{\mathsf{QC}}^{\circ} = \begin{pmatrix} E_{S0,\mathsf{QC}}^{\circ} & 0 & 0 & \cdots \\ 0 & E_{S1,\mathsf{QC}}^{\circ} & 0 & \cdots \\ 0 & 0 & E_{S2,\mathsf{QC}}^{\circ} & \cdots \\ \vdots & \ddots \end{pmatrix}$$

Construction and **diagonalization** of the perturbed Hamiltonian matrix in order to get the **perturbed** energies at each step of the **MD simulation**:

ε_{c/H}

a (, , , , , , , , , , , , , , , , , ,				
addrawdlik	nallin hushalanda ku	al an all the state of the second state of the	poper and providing services	Umhallad -
	, Januar (Maria (Maria (Maria (Maria)))	a falikana mana kara ya mana ya kaja ji karali sikarati sika	una parta a barrata a barra	Unternalliale
nanajur (blda	lanalia (pangala)	ulikan dan kangan kangalari yakali san ki pa	u say yy diany by siden aby sign	Unternativati

Calculation of the PT energy variation

Product ensembleCys145⁻ + His41H⁺Reactant ensembleCys145H + His41

$$\Delta \varepsilon = \varepsilon_{C-/H+} - \varepsilon_{C/H+}$$

Calculation of the free energy change, ΔG° , from the $\Delta \epsilon$:

$$\Delta G^0 \cong \frac{k_B T}{2} \ln \frac{\langle e^{\beta \Delta \varepsilon} \rangle_P}{\langle e^{-\beta \Delta \varepsilon} \rangle_R}$$

PT reaction in the apo state

PT reaction with inhibitors

Peptidomimetic covalent inhibitors N3 and 13b

Stars (*) indicate the sites of nucleophilic attack of anionic sulphur of cysteine of the catalytic dyad

PT reaction with inhibitor N3

apo

with N3

PT reaction with inhibitor 13b

Molecular contributions to the PT energetics

to the **electrostatic potential** to understand which protein regions contribute the most to the **PT** energy

APO state

Molecular contributions to the PT energetics

Analysis of the contribution of each protein residue to the **electrostatic potential** to understand which protein regions contribute the most to the **PT** energy

APO state

discourage PT reaction Wdyad Wcat

S NODENA S

CNRNANO

Molecular contributions to the PT energetics

In Summary

The present results can help identify:

- compounds that can promote the catalytic
 PT reaction and, therefore, be good
 candidates as covalent inhibitors;
- specific water molecules able to affect the PT energetics and that could be explicitly included in docking procedures;
- **key sites** that can be targeted with ligands, in the framework of **allosteric inhibition**, to suppress the enzymatic activity.

Two charge transfer reactions

- The catalytic proton transfer (PT) reaction in SARS-CoV-2 main protease (Mpro)
- The light-induced electron transfer (ET) reaction in lactate monooxygenase (LMO)

An ongoing work

Lactate Monooxygenase (LMO)

Biological function:

Kean and Karplus, Protein Sci., 2019, 28, 135-149

Lactate Monooxygenase (LMO)

Photoreaction:

 $\label{eq:R} \begin{array}{c} R = \mbox{-}COOH \ \ \ -COOH_2 \ \ \ -COCH_3 \ \ \ -COCOOH \ \ \ -CH_2COOH \ \ \ -CHOHCOOH \ \ \ \ \cdots \cdots$

Mechanism?

Experimental data

Intrinsic ET (apo state)

Pump-probe spectroscopy

Experimental data

Intrinsic ET (apo state)

75 ns-long MD simulation of LMO octamer in solution in the first excited state

75 ns-long MD simulation of LMO octamer in solution in the first excited state

Gas phase QM calculations on structure A

	Excitation Energy (eV)	Oscillator Strength
(1) CT_{His}	3.02	0.0090
(2) CT_{Tyr}	3.16	0.0006
$(3) S_1$	3.39	0.2861
(7) S_2	4.37	0.0843

Gas phase QM calculations on structure B

	Excitation Energy (eV)	Oscillator Strength
(1) CT_{His}	3.00	0.0035
(2) S_1	3.44	0.3163
(4) CT_{Tyr}	3.79	0.0005
(9) S_2	4.53	0.0684

Protein electrostatic effect inclusion for structure A

Protein electrostatic effect inclusion for structure B

- WT protein: efficient ET from His290, less efficient ET from Tyr152. Subsequent PT from His/Tyr to Asp180
- Y152F: ET with His similar to WT but His/Asp PT more efficient as Tyr no longer competes
- H290Q: less efficient ET from Tyr152

Next:

Investigation of LMO in complex with oxalate

Acknowledgents

