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Charge Transfer in Biological Systems ((r l%
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“Life on earth is energized by the stepwise vectorial transport

of individual electrons and protons.”™

* Photosynthesis
* Respiration
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*Beratan et al. Acc. Chem. Res. 2015, 48.2, 474-481.
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* Proper treatment of the reaction event at the quantum level
* Proper description of the complexity of the system

* Interplay between reactants and environment considered

!

Interpretation at the molecular level of the reaction/process of interest
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Two charge transfer reactions (‘r l
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* The catalytic proton transfer (PT) reaction
INn SARS-CoV-2 main protease (Mpro)

* The light-induced electron transfer (ET) reaction
In lactate monooxygenase (LMO)
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SARS-Cov-2 main protease (Mpro) C"
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Mpro plays a key role in viral replication
and transcription
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Jeong et al. Front. Microbiol. 11, 2020, 1723.
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Mpro is one of the most promising targets for drug development

* |nhibition of its cleaving activity would block the viral
replication cycle

® [Its recognition sequence is different from that of all
human proteases

® Mpro structure is very similar among the
coronaviruses family

H. Su et al., Angew. Chem. 2021, 133, 2 — 16.
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SARS-Cov-2 main protease (Mpro) C"
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Cysteine-histidine catalytic dyad (Cys145/His41)
Protein hydrolysis mediated by Cys145 that binds to the carbonyl carbon of a susceptible peptide bond
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Moliner V. et al., Chem. Sci. 2020, 11, 10626-10630; Tunon, |. et al., ACS Catal. 2020, 10, 12544-12554; Warshel, A. et al, Biochem. 2020, 59,
4601-4608; Paasche, A. et al., Biochem. 2014, 53, 5930-5946.
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Cysteine-histidine catalytic dyad (Cys145/His41)

The imidazole of His41 is the base of the proton transfer (PT) Aspat
reaction leading to a highly reactive zwitterionic couple:
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Moliner V. et al., Chem. Sci. 2020, 11, 10626-10630; Tunon, |. et al., ACS Catal. 2020, 10, 12544-12554; Warshel, A. et al, Biochem. 2020, 59,
4601-4608; Paasche, A. et al., Biochem. 2014, 53, 5930-5946.



SARS-Cov-2 main protease (Mpro)

® The covalent binding of some classes of inhibitors
(such as Michael acceptors and ketoamides)
also requires deprotonated Cys145 through a PT to His41.
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SARS-Cov-2 main protease (Mpro) C‘r|
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* The covalent binding of some classes of inhibitors
(such as Michael acceptors and ketoamides)
also requires deprotonated Cys145 through a PT to His41.

* The inability to efficiently promote the PT reaction Cysl45 _ Cysl145
has been suggested to determine N HH °
the low inhibition potencies of some known inhibitors*. S, NJ% o
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*Paasche, A. et al., Biochem. 2014, 53, 5930-5946.
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* The covalent binding of some classes of inhibitors TS
(such as Michael acceptors and ketoamides)
also requires deprotonated Cys145 through a PT to His41.

* The inability to efficiently promote the PT reaction
has been suggested to determine

the low inhibition potencies of some known inhibitors*.

(Cys145™+ His41H™)
®* The PT reaction free energy in the presence of two inhibitors

(N3 and a-ketoamide 13b) accounts for 40-50%
of the total activation free energy

for the formation of the covalent complex**.
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*Paasche, A. et al., Biochem. 2014, 53, 5930-5946; **Tunon, |. et al., ACS Catal. 2020, 10, 12544-12554; Warshel, A. et al, Biochem. 2020, 59,
4601-4608.
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The improvement of the stability of the charged catalytic dyad by
the inhibitor binding could be a strategy to promote inhibition

Knowledge of the protein regions capable of affecting
the PT reaction is a crucial point for the design
and screening of potential inhibitors

|
(Cys145 ™+ HisdlH™) !
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Here we focus on the investigation of the thermodynamics of the PT
reaction in the apo enzyme and in complex with two inhibitors

The main aim is to identify the enzyme regions and specific water
molecules that control the activation of the catalytic PT reaction




Protonation state of key residues
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MD simulations to investigate the effects
of different protonation states for crucial residues in Mpro
in both the apo form as well as ligand-bound complexes

P$ — P4 — P3 — P2 — P1 — PI’ — P3 — P2 — P1 — PI’

Al T L s L I ka

N3 13b

Peptidomimetic covalent inhibitors N3 and 13b

Pavlova, et al., Chem. Sci. 2021, 12, 1513-1527.




Protonation state of key residues «r ]%
=

CNRNANO

The combination of protonation states for histidines in or near the catalytic
site can have a profound impact on Mpro's structural stability

Pavlova, et al., Chem. Sci. 2021, 12, 1513-1527.
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Modelling the PT reaction (‘r |
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We treat at the QM level a small portion of the system
(the QC, here Cys/His sidechains)
while the rest of the system (the environment) exerts a
classical electrostatic perturbation on the QC*

Cys145H + His41= Cysl4S™ + His41H"

Reactant ensemble Product ensemble

MD simulations* of the apo enzyme: in the reactant ensemble and in the product ensemble

*Zanetti-Polzi et al., Phys. Chem. Chem. Phys. 2020, 22, 19975-19981; *Pavlova, et al., Chem. Sci. 2021, 12, 1513-1527.
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Cysl45SH + His41= Cysl45™ + His41H"

Reactant ensemble Product ensemble

QM calculations of gas-phase electronic Hamiltonian
eigenstates for the quantum centers (QCs):

Eso.oc 0 0
0 Efgc 0 .
0 0 Eec.

=—> Unperturbed energies and dipoles for C/H
Hocm
=—> Unperturbed energies and dipoles for C-/H+
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Modelling the PT reaction (B |
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Construction and diagonalization of the perturbed Hamiltonian matrix in order to get
the perturbed energies at each step of the MD simulation:
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Instantaneous perturbed eigevalues
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Product ensemble  Cys145~ + His41H"
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Reactant ensemble  Cys14SH + His41
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Calculation of the PT energy variation Ae=¢€.,.-€

Calculation of the free energy
change, AG®, from the Ae:
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AG® =
(Cys14SH + His41E = Cys145~ + His41H"),,, 37
- +
(Cys14SH + His41D = Cys145™ + His41H"), 34 Cys145™ + His41H
(His41E = His41D),,, 3

*kJ/mol, mean standard error is 6 kJ/mol
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Laura Zanetti-Polzi et al. J. Phys. Chem. Lett. 2021, 12(17), 4195-4202
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P5 — P4 — P3 — P2 — P1 — PI’ P4 — P3 — P2 — P1I — PI’

H H

o 0 N

O—N o] o} 0 S o) \o>

x O l
MJLTWA ey ﬁiq\)kﬁ;t«]@
o = o) Y o) o X o
N3 13b

Peptidomimetic covalent inhibitors N3 and 13b

Stars (*) indicate the sites of nucleophilic attack of anionic sulphur of cysteine of the catalytic dyad

Laura Zanetti-Polzi et al. J. Phys. Chem. Lett. 2021, 12(17), 4195-4202
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AG® *
(Cysl4SH + His41D = Cys145~ + His41H"),, 34 Cyslas + Hi341H+apo
(Cysl4SH + His41D = Cys145~ + His41H")y; 20 34 kJ/mol
*kJ/mol, mean standard error is 6 kJ/mol
with N3

20 kJ/mol

Cysl145 + His41D

Laura Zanetti-Polzi et al. J. Phys. Chem. Lett. 2021, 12(17), 4195-4202



®
PT reaction with inhibitor 13b C |§
=

CNRNANO

AGO *
- : +
(Cys14SH + His41E = Cys145~ + His41H"),, 37 Cys145 + His41H apo
(Cys145H + His41E = Cysl145~ + His41H"),3, 31 37 kJ/mol

with 13b

*kJ/mol, mean standard error is 6 kJ/mol

31 kJ/mol

wAsp48
, M‘ Argl88
SerlM2 ¢ Glul66

Cysl145 + His41D

Laura Zanetti-Polzi et al. J. Phys. Chem. Lett. 2021, 12(17), 4195-4202
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Molecular contributions to the PT energetics ‘r |
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Analysis of the contribution of each protein residue )‘Asms
to the electrostatic potential to understand which protein
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Laura Zanetti-Polzi et al. J. Phys. Chem. Lett. 2021, 12(17), 4195-4202



Molecular contributions to the PT energetics

Analysis of the contribution of each protein residue
to the electrostatic potential to understand which protein

regions contribute the most to the PT energy
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discourage PT reaction

Laura Zanetti-Polzi et al. J. Phys. Chem. Lett. 2021, 12(17), 4195-4202
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In Summary (B l
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with inhibitor

The present results can help identify: APO state

°* compounds that can promote the catalytic
PT reaction and, therefore, be good
candidates as covalent inhibitors;

* specific water molecules able to affect the
PT energetics and that could be explicitly D
included in docking procedures;

&
* key sites that can be targeted with ligands, in Y @
the framework of allosteric inhibition, to » ad/' 5‘@
suppress the enzymatic activity. ’ o%w\
N PN
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Two charge transfer reactions (‘r l
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* The catalytic proton transfer (PT) reaction
INn SARS-CoV-2 main protease (Mpro)

* The light-induced electron transfer (ET) reaction
In lactate monooxygenase (LMO)

An ongoing work
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Biological function:

OH 0
+ O —> “ + H,O,
CH;CHCOOH CH;CCOOH
L-lactate Pyruvate

Kean and Karplus, Protein Sci., 2019, 28, 135-149
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Photoreaction:

RCOOH + LMO ——» N(5)-R + CO,

l

RH

R = -COOH -CONH, -COCH; -COCOOH
-CH,COOH -CHOHCOOH -

Mechanism?



Experimental data

Intrinsic ET (apo state)
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Pump-probe spectroscopy
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Experimental data

Intrinsic ET (apo state)
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Computational data: intrinsic ET (‘r E
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75 ns-long MD simulation of
LMO octamer in solution
in the first excited state
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Computational data: intrinsic ET «r l%
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75 ns-long MD simulation of LMO octamer in solution in the first excited state
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Gas phase QM calculations on structure A

Excitation Energy (eV) Oscillator Strength
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Gas phase QM calculations on structure B

i Excitation Energy (eV) Oscillator Strength
His290 I (1) CT 46 3.00 0.0035
ﬁ (2) Sy 3.44 0.3163
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Protein electrostatic effect inclusion for structure A
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Protein electrostatic effect inclusion for structure B
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In summary 4(‘ l
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* WT protein: efficient ET from His290, less efficient ET from Tyr152.
Subsequent PT from His/Tyr to Asp180

* Y152F: ET with His similar to WT but His/Asp PT more efficient as Tyr no longer competes

* H290Q: less efficient ET from Tyr152

0.0 1
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a e
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Investigation of LMO < 15- WT*;ZQ;ZO‘* ‘ﬁ
. . pump nm
iIn complex with oxalate 2.0 probe@454 nm T

1 10 100 1000
Delay Time (ps)
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for your attention
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