Cardiovascular biomaterials and nanotools

Inserm, U698, Cardiovascular Bio-engineering, CHU X. Bichat, University Paris 7
Team leader: Didier Letourneur

Amanda Andriola Silva
Cardiovascular biomaterials and tissue engineering

Fucoidan
from brown seaweeds
Poly(L Fucose) + sulfate groups

Dextran
Poly (α 1,6 glucose)

Pullulan
Poly (α 1,4 et α 1,6 glucose)

Polysaccharides + STMP (sodium trimetaphosphate) → 3D scaffold

Bone tissue engineering
Skin tissue engineering
3D cell culture

IMMATIS (IMplantable MAtrix and TISsue) Start-up

2 Patent applications (PCT 2009)
Adv Funct Mater (2008); Biomaterials (2010); Advanced Mater (2011)
Nanotools for imaging and treatment of atherothrombosis

Development of new ligands to image atherothrombosis

Fucoidan, a sulfated polysaccharide, interacts with P-selectin (Kd 0.3 nM)

Fucoidan coated USPIO allows MRI of aneurysmal thrombus

Fucoidan binds to 99mTc to visualize heart ischemia, aneurysmal thrombus and endocarditis with SPECT

• Strategy

 Fucoidan with 99mTc for GMP production in SPECT imaging and human clinical trial

Key refs

• Patent 2012: EP2416806
• J Nucl Med. 2011
• Chem Commun. 2011

Staff & Collab

• Algues & Mer; Guerbet
• IFR 02; Team 1 (platelets) Team 4 (imaging)
• P Saboural (Ph.D Student)

Funding

• FUI 11/OSEO/Medicen: 400 K€
• FP7 large scale 2012: 9 800 K€ (DL)
Nanotools for imaging and treatment of atherothrombosis

Imaging

Nanotools: polysaccharide or copolymer platforms for Ultrasonography

In vivo: elastase model of aneurysm on rat

Treatment

Acute ischemic stroke

Drug: tPA - fibrinolysis but bleeding risk

Nanotools: improve tPA furtiveness, targeting

In vivo: thrombi on mice

• **Strategy**
 - **Coated** systems with fucoidan for P-selectin targeting
 - **Loaded** targeted systems with PFOB for molecular imaging of aneurysmal thrombus

Collab with Team 1

In vivo intravital fluorescent microscopy

• **Strategy**
 - **Loaded** nanotools with tPA for thrombolytic activity without systemic bleeding risk

Key refs
- Patent 2012: WO2012028623
- Biomaterials 2010

Staff & Collab
- Bracco; nanoPET Pharma
- NanoAthero : 16 partners / 9 countries
- I. Baldi (ATER) & M. Derkaoui (Postdoc)
- T. Bonnard & B. Li (Ph.D Students)

Funding
- FP7 large scale 2012: 9 800 K€ (DL)
- ANR Emergence 2012: 200 K€ (CC)
Nanotoools: polysaccharide or copolymer platforms for Ultrasonography

In vivo: elastase model of aneurysm on rat

• Strategy
 - Coated systems with fucoidan for P-selectin targeting
 - Loaded targeted systems with PFOB for molecular imaging of aneurysmal thrombus

Acute ischemic stroke
Drug: tPA - fibrinolysis but bleeding risk
Nanotoools: improve tPA furtiveness, targeting

In vivo: thrombi on mice

Collab with Team 1

In vivo intravital fluorescent microscopy

• Strategy
 - Loaded nanotoools with tPA for thrombolytic activity without systemic bleeding risk

Key refs
- Patent 2012: WO2012028623
- Biomaterials 2010

Staff & Collab
- Bracco; nanoPET Pharma
- NanoAthero : 16 partners / 9 countries
- I. Baldi (ATER) & M. Derkaoui (Postdoc)
- T. Bonnard & B. Li (Ph.D Students)

Funding
Coordinators:
- FP7 large scale 2012: 9 800 K€ (DL)
- ANR Emergence 2012: 200 K€ (CC)
Magnetic nanoparticles interacting with living systems

Amanda K. Andriola Silva
N. Luciani, S. Bonneau, J. Kolosnjaj-Tabi, N. Boggetto,
O. Clément, I. Marangon, M. Bureau,
F. Gazeau, C. Wilhelm

Laboratoire Matière et Systèmes Complexes (MSC),
UMR 7057 CNRS, Université Paris 7 Diderot
Cell microvesicles – multifunctional drug carriers inspired by nature

Encapsulation of drugs

- m-THPC
- TPCS2a
- Doxorubicine
- Tissue plasminogen activator (tPA)

Encapsulation of nanomaterials

- Iron oxide 9-nm nanoparticles
- Iron oxide 18-nm nanocubes
- Gold 5-nm nanoparticles
- Dimers gold / iron oxide 16-nm nanoparticles
- Quantum Dots
Cell microvesicles – multifunctional drug carriers inspired by nature

Encapsulation of drugs

- m-THPC
- µmagnet
- Doxorubicine

Encapsulation of nanomaterials

- Tissue plasminogen activator (tPA)

[Silva et al, Nanomedicine, 2012]

[Silva et al, Nanoscale, 2013]
Cell microvesicles – multifunctional drug carriers inspired by nature

Consortium setting with:

Seppo Vainio (University of Oulu, Finland)
Hadi Valadi (University of Gothenburg, Sweden)
Benedetta Bussolati (University of Torino, Italy)

amanda.silva@univ-paris-diderot.fr
The life cycle of nanomagnets in the body

Optical birefringence signal induced by an external magnetic field

Interactions with proteins

Aggregation

Nanoparticle

Transformation, degradation, recycling and clairance

Cell internalisation

Mice tissues:
High-resolution TEM (imaging, diffraction, EDX chemical mapping) + Magnetization measurements

Lartigue et al, ACS Nano. 2013
Lévy et al, Biomaterials, 2011
Lévy et al, Nanoscale, 2011
Lévy et al, Contrast Media and Molecular Imaging, 2012

florence.gazeau@univ-paris-diderot.fr
Magnetic hyperthermia

Exposure to the alternating magnetic field (3x 30 min, 110 kHz, 24 kA/m)

Infrared camera monitoring

florence.gazeau@univ-paris-diderot.fr and claire.wilhelm@univ-paris-diderot.fr